
Understanding TAHMO Data 
Flow for QC

Tom Dietterich

SENSOR-DX Team 1



Goal: Understand where QC happens

SENSOR-DX Team 2



Data Acquisition
• Questions for Rick:

• What are these different 
weather station types?

• What is in the MongoDB?

• Note: 
• Output from the two Data 

adapters goes to the Ingest 
Microservice

SENSOR-DX Team 3



Limit Checks and Related Rules

• Where: A vs B?
• Range checks

• Temperature
• Relative Humidity
• Atmospheric Pressure
• Precipitation
• Solar Radiation (?)

• Other rules?
• Minimum variance (to catch stuck 

sensors)?

SENSOR-DX Team 4

A

B



Order of Processing: Is this correct?
• Raw data Ingest  InfluxDB Raw 

data
• Simple QA/QC requests raw data, 

applies range checks and other 
rules  Ingest  InfluxDB
Controlled data

• SensorDX requests Controlled data 
and applies neighbor regression 
writes output to MongoDB?

• Manual/Satellite. Rick prepares 
spreadsheet, Gilbert & Victor 
manually compare and create QC 
Objects in MongoDB

SENSOR-DX Team 5



Customer Data Access

• How do the QC flags in the MongoDB become 
visible to the customers?

• What API do they access?

SENSOR-DX Team 6



SensorDX Quality Control
[Not to be confused with the ticketing system]

• JobManager queries RainQC API to get the list of stations having models (“target 
stations”) and their neighbors

• JobManager queries PostgreSQL to find list of complete and incomplete jobs from the 
active job table. Jobs that completed or that hit their retry limit are moved to the job 
history table

• JobManager creates a new job for each target station for the current day and adds 
them to the active job table in PostgreSQL

• JobManager creates a list of all stations that are either targets or neighbors, then 
queries the Measurements API to determine which jobs are “data complete”. [This is 
for sanity checking only.] This is based on “raw” values (does not include Simple QC 
processing; BUG?). 

• JobManager invokes RainQC server on each job in the active job table
• RainQC server retrieves data for the target station and its neighbors from the 

Measurements API. RainQC uses “controlled” values.
• RainQC server computes the data quality score (1 or 2) and returns this to the Job 

Manager
• JobManager writes the results to the Report Quality API
• JobManager updates the PostgreSQL active job table to indicate which jobs succeeded 

and which failed. The failed jobs will be re-tried the next day

SENSOR-DX Team 7



Explanation of the Daily JobManager report

• Indicates which 
date is being 
scored

• Note: the Job 
Manager is 
stateful, 
rerunning it will 
create new jobs. 
There is a 
command line 
flag to prevent 
this

SENSOR-DX Team 8



Explanation of the Daily JobManager report

• What fraction of models (target 
stations) are data complete? 

• I watch the 100% completeness 
number as an overall indication 
of network health

• A job is 100% data complete if 
the target and all of its 
neighbors reported 288 values 
(for most stations)

• A job is 80% data complete if 
the target and all of its 
neighbors reported 230 = 0.8 ×
288 values, etc.

SENSOR-DX Team 9



Explanation of the Daily JobManager report

• General status 
information (not 
required by 
JobManager, but it 
was easy to show)

• “total” is the total 
number of stations 
that are involved 
in the scoring 
(either as targets 
or neighbors)

SENSOR-DX Team 10



Number of targets affected by low-data stations

• Example: TA00199 is used as a neighbor or target for 7 models, so it 
prevented 7 target stations from being scored

• This is for general information only, but it suggests that TA00199 
should be a high priority to fix, if possible

SENSOR-DX Team 11



Session Summary
• Total time for RainQC scoring: 57 

minutes + 31 seconds

SENSOR-DX Team 12



Session Summary
• The PostgreSQL database has two 

tables
• Active Jobs table
• History table

• At the start of this run, the active jobs 
table contained 71 jobs that succeeded 
in the previous day’s run and 199 jobs 
that have failed in previous days (up to 
7 days)

• Job history table record count is the 
total number of jobs that have been 
created since the database was 
initialized. This will just keep growing

• I don’t know what the “Scoring job
record table” is

SENSOR-DX Team 13



Job Results Table

• 68 jobs were successfully run
• 67 for today
• 1 left over from yesterday

• Two flag = 2 (“inconsistent”) QC flags were reported
• Four stations scored as “anomalous” (flag 2) by the neighbor regression model were “downgraded” (flag 1) by a 

special rule that detects and removes false alarms involving low, but non-zero, precipitation values
• Rule 1: If target and neighbors all reported <= 1.0 mm, then convert flag 2 to flag 1
• Rule 2: If target and neighbors all reported <= 5.0 mm, then convert flag 2 to flag 1
• The rule is selected in the call to RainQC (??)

SENSOR-DX Team 14



Most important result: List of flagged stations

• TA00409 was flagged as 2. 
• Score: 168.289 is an anomaly score assigned by the model
• Thresh: is the anomaly threshold (also computed by the model)
• Because 168.289 > 79.492, this is flagged as 2
• Measured precipitation (‘pr’) was 0.000 mm
• There is one neighboring station 98km away, and it reported 

6.329mm

SENSOR-DX Team 15



Asset Dashboard / Sensordx

• The results also appear here
• However, here the station ids are listed, but not the distances
• In the jobmanager report, the distances are listed, but not the station ids

SENSOR-DX Team 16



Total flags are also summarized in
assetdashboard/qc

• I don’t see how TA00409 could have been flagged 287 times in just 
one week. Rick?

• Neither dashboard is sortable or searchable
• No linkage to a time series of the ‘pr’ readings plotted along with the 

neighbors (e.g., as a double mass plot or parallel time series plot)

SENSOR-DX Team 17



Job table statistics after scoring
• Failure count = number of jobs

that hit the retry limit
• 1490 – 205 = 1285 jobs need to 

be retried

SENSOR-DX Team 18



Monthly Summary

• Michael produces a monthly summary report. It is controlled by a 
command line flag on the Job Manager

• For each station, it prints one row for each day that station was flagged
• In this example, TA00025 was flagged 5 times in April

• The first two times, TA00025 reported low precipitation when one of its 
neighbors was reporting high values

• The final three times, TA00025 reported large values when two of its neighbors 
were reporting small values

• These look like false alarms to me

SENSOR-DX Team 19


	Understanding TAHMO Data Flow for QC
	Goal: Understand where QC happens
	Data Acquisition
	Limit Checks and Related Rules
	Order of Processing: Is this correct?
	Customer Data Access
	SensorDX Quality Control�[Not to be confused with the ticketing system]
	Explanation of the Daily JobManager report
	Explanation of the Daily JobManager report
	Explanation of the Daily JobManager report
	Number of targets affected by low-data stations
	Session Summary
	Session Summary
	Job Results Table
	Most important result: List of flagged stations
	Asset Dashboard / Sensordx
	Total flags are also summarized in�assetdashboard/qc
	Job table statistics after scoring
	Monthly Summary

