
Understanding TAHMO Data 
Flow for QC

Tom Dietterich

SENSOR-DX Team 1



Goal: Understand where QC happens

SENSOR-DX Team 2



Data Acquisition
• The data loggers from various 

types of stations send 
information to TAHMO via 
three different paths

• Most stations report hourly to 
the METER server

• In some countries, the MET
service wants the data to flow 
through them. “In-Country UDP 
proxy”

• Some stations report directly to 
the TAHMO FTP server

• Note: 
• Output from the two Data 

adapters goes to the Ingest 
Microservice

SENSOR-DX Team 3



Simple QA/QC “Rule-based Checks”

• When data arrives in the InfluxDB Raw 
database, the Simple QA/QC system 
runs. It performs a variety of checks

• Range checks verify that the 
observation is within realistic ranges 
(e.g., no negative precipitation)

• Step checks verify that the 
observations do not exhibit sudden big 
changes, which are symptoms of 
electrical problems

• Minimum variance checks verify that 
the signal is real and not stuck at some 
constant value

SENSOR-DX Team 4



Order of Processing
• Raw data Ingest  InfluxDB Raw data
• Simple QA/QC requests raw data, applies rule-based 

checks  Ingest  InfluxDB Controlled data
• SensorDX requests Controlled data and applies 

neighbor regression  writes output to MongoDB
• Simple QA/QC reads MongoDB and adds the relevant 

flags to the InfluxDB Controlled Data
• Manual/Satellite. George prepares a spreadsheet, 

Gilbert & Victor manually compare and create QC 
Objects in MongoDB. The QC Objects assign a flag of 3, 
and are initially “on-going”, so new data for the 
flagged sensor will be flagged with a 3 in the 
Controlled data. They also create tickets in the 
ticketing system

• When a technician visits the station and adds notes to 
the ticket, Gilbert & Victor update the QC Object. 

• If the problem was real and was repaired, they enter an end 
date on the QC Object.

• If the problem was a false alarm, they change the end date 
to match the start date so that it has zero duration. We have 
discussed alternatives such as downgrading the flag to be 1.

SENSOR-DX Team 5



Customer Data Access

• Customers accessing data through the External 
API are shown data with flags 1 and 2, but data 
with flags 3 and 4 are not shown

• Met agencies see all of the data values

SENSOR-DX Team 6



SensorDX Quality Control
[Not to be confused with the ticketing system]

• JobManager queries RainQC API to get the list of stations having models (“target 
stations”) and their neighbors

• JobManager queries PostgreSQL to find list of complete and incomplete jobs from the 
active job table. Jobs that completed or that hit their retry limit are moved to the job 
history table

• JobManager creates a new job for each target station for the current day and adds 
them to the active job table in PostgreSQL

• JobManager creates a list of all stations that are either targets or neighbors, then 
queries the Measurements API to determine which jobs are “data complete”. [This is 
for sanity checking only.] This is based on “raw” values (does not include Simple QC 
processing; BUG?). 

• JobManager invokes RainQC server on each job in the active job table
• RainQC server retrieves data for the target station and its neighbors from the 

Measurements API. RainQC uses “controlled” values.
• RainQC server computes the data quality score (1 or 2) and returns this to the Job 

Manager
• JobManager writes the results to the Report Quality API
• JobManager updates the PostgreSQL active job table to indicate which jobs succeeded 

and which failed. The failed jobs will be re-tried the next day

SENSOR-DX Team 7



Explanation of the Daily JobManager report

• Indicates which 
date is being 
scored

• Note: the Job 
Manager is 
stateful, 
rerunning it will 
create new jobs. 
There is a 
command line 
flag to prevent 
this

SENSOR-DX Team 8



Explanation of the Daily JobManager report

• What fraction of models (target 
stations) are data complete? 

• I watch the 100% completeness 
number as an overall indication 
of network health

• A job is 100% data complete if 
the target and all of its 
neighbors reported 288 values 
(for most stations)

• A job is 80% data complete if 
the target and all of its 
neighbors reported 230 = 0.8 ×
288 values, etc.

SENSOR-DX Team 9



Explanation of the Daily JobManager report

• General status 
information (not 
required by 
JobManager, but it 
was easy to show)

• “total” is the total 
number of stations 
that are involved 
in the scoring 
(either as targets 
or neighbors)

SENSOR-DX Team 10



Number of targets affected by low-data stations

• Example: TA00199 is used as a neighbor or target for 7 models, so it 
prevented 7 target stations from being scored

• This is for general information only, but it suggests that TA00199 
should be a high priority to fix, if possible

SENSOR-DX Team 11



Session Summary
• Total time for RainQC scoring: 57 

minutes + 31 seconds

SENSOR-DX Team 12



Session Summary
• The PostgreSQL database has two 

tables
• Active Jobs table
• History table

• At the start of this run, the active jobs 
table contained 71 jobs that succeeded 
in the previous day’s run and 199 jobs 
that have failed in previous days (up to 
7 days)

• Job history table record count is the 
total number of jobs that have been 
created since the database was 
initialized. This will just keep growing

• I don’t know what the “Scoring job 
record table” is

SENSOR-DX Team 13



Job Results Table

• 68 jobs were successfully run
• 67 for today
• 1 left over from yesterday

• Two flag = 2 (“inconsistent”) QC flags were reported
• Four stations scored as “anomalous” (flag 2) by the neighbor regression model were “downgraded” (flag 1) by a 

special rule that detects and removes false alarms involving low, but non-zero, precipitation values
• Rule 1: If target and neighbors all reported <= 1.0 mm, then convert flag 2 to flag 1
• Rule 2: If target and neighbors all reported <= 5.0 mm, then convert flag 2 to flag 1
• The rule is selected in the call to RainQC (??)

SENSOR-DX Team 14



Most important result: List of flagged stations

• TA00409 was flagged as 2. 
• Score: 168.289 is an anomaly score assigned by the model
• Thresh: is the anomaly threshold (also computed by the model)
• Because 168.289 > 79.492, this is flagged as 2
• Measured precipitation (‘pr’) was 0.000 mm
• There is one neighboring station 98km away, and it reported 

6.329mm

SENSOR-DX Team 15



Asset Dashboard / Sensordx

• The results also appear here
• However, here the station ids are listed, but not the distances
• In the jobmanager report, the distances are listed, but not the station ids

SENSOR-DX Team 16



Total flags are also summarized in
assetdashboard/qc

• I don’t see how TA00409 could have been flagged 287 times in just 
one week. Rick?

• Neither dashboard is sortable or searchable
• No linkage to a time series of the ‘pr’ readings plotted along with the 

neighbors (e.g., as a double mass plot or parallel time series plot)

SENSOR-DX Team 17



Job table statistics after scoring
• Failure count = number of jobs 

that hit the retry limit
• 1490 – 205 = 1285 jobs need to 

be retried

SENSOR-DX Team 18



Monthly Summary

• Michael produces a monthly summary report. It is controlled by a 
command line flag on the Job Manager

• For each station, it prints one row for each day that station was flagged
• In this example, TA00025 was flagged 5 times in April

• The first two times, TA00025 reported low precipitation when one of its 
neighbors was reporting high values

• The final three times, TA00025 reported large values when two of its neighbors 
were reporting small values

• These look like false alarms to me

SENSOR-DX Team 19



Improving the QC Dashboard
• Our current web pages are not meeting the needs of Gilbert and Victor. This is causing them to do 

a lot of manual copying and pasting to build their own spreadsheet tables
• Some UI ideas:

• Overview web page
• Sort stations into two groups:

• Stations with one or more outstanding tickets and no new problems
• Stations for which a new problem has been flagged

• Note that these stations might have existing tickets, but the new problem is not mentioned in the existing tickets
• Within these groups, sort by some notion of “severity” (e.g., number of days with flagged observations, number of days offline)

• Detailed web page: Shows data for a single station
• Data browser: 

• Show time series for one or more sensors
• Show time series for those same sensors on nearby stations
• Show technician or host visits to the station

• Issue browser:
• Show existing open and closed issues for this station. Ability to examine the issue, edit it, and close the issue. Ability to open the 

associated QC Objects and update them
• Station summary:

• Station type/generation, installation date, data logger type, installation date
• Host contact information

• Button to create an issue and pre-fill the relevant fields

SENSOR-DX Team 20


	Understanding TAHMO Data Flow for QC
	Goal: Understand where QC happens
	Data Acquisition
	Simple QA/QC “Rule-based Checks”
	Order of Processing
	Customer Data Access
	SensorDX Quality Control�[Not to be confused with the ticketing system]
	Explanation of the Daily JobManager report
	Explanation of the Daily JobManager report
	Explanation of the Daily JobManager report
	Number of targets affected by low-data stations
	Session Summary
	Session Summary
	Job Results Table
	Most important result: List of flagged stations
	Asset Dashboard / Sensordx
	Total flags are also summarized in�assetdashboard/qc
	Job table statistics after scoring
	Monthly Summary
	Improving the QC Dashboard

