Experiments with Latent Precipitation Model

Tom Dietterich

V2 5 September 2022

Changes begin on slide 19

Fitting a Kriging model to the Oklahoma data

- Data: 366 days from 2008 OK Mesonet. 117 stations.
- Removed observations with QA flags indicating bad data. Most days there were only 116 stations with good data.
- Removed days if there was no rain anywhere in the state
- Normalized the precipitation numbers each day so that the maximum reported value is 1.0

Two Model-Fitting Problems

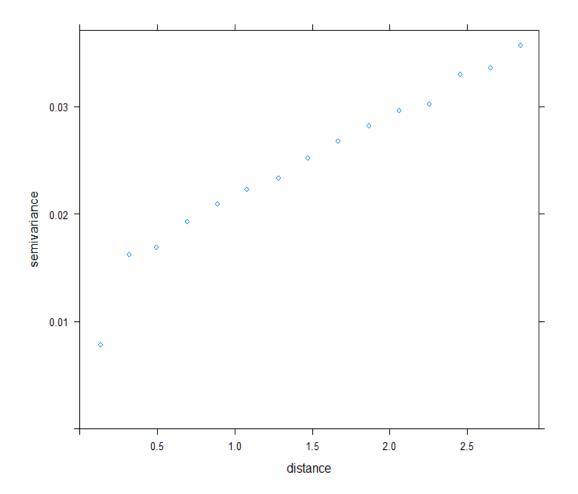
- Problem 1: Fit a spatial Gaussian process ("Kriging") model. This involves fitting a semivariogram model γ , which defines the kernel for the GP
 - In Oklahoma, we have well-cleaned data, so I was able to do this.
 - In Africa, we could use manually-cleaned data from TAHMO
- Problem 2: For each day, we want to estimate the potential rain ψ at each station
 - For stations that reported $r_i > 0$, we define $\psi(x_i) = r_i$ and $d_i = 1$
 - For stations that reported $r_i = 0$, this could be due to a detection failure $(d_i = 0)$ with $\psi(x_i) > 0$ or it could be a true zero with $\psi(x_i) = 0$
 - We are particularly interested in the $\psi(x_i) > 0$ and $d_i = 0$, because that is a "training example" for estimating θ_i , probability that $d_i = 1$
 - In Problem 2, we assume we know γ

Solving Problem 1: Step 1: The Empirical Semivariogram

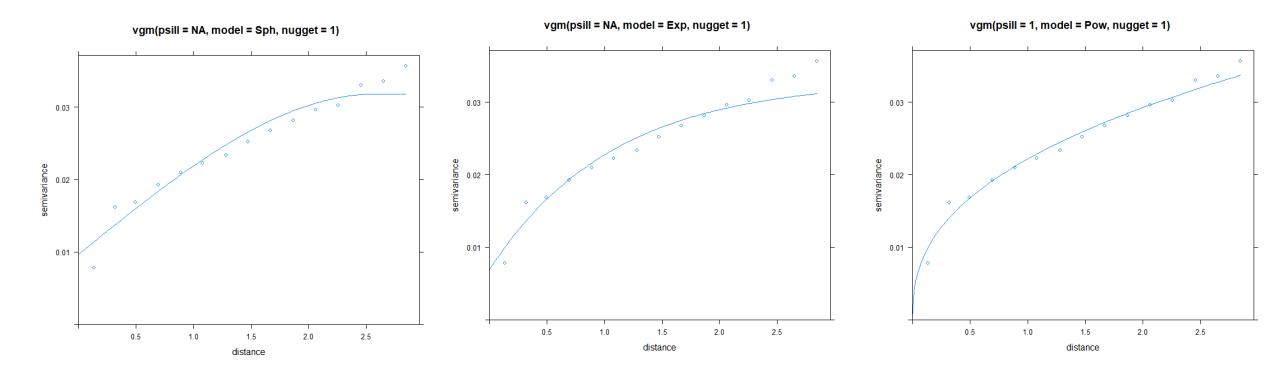
- R gstat package
- Pooling data across all (non-zero) days

vg <- variogram(rain ~ day, data = df.year.scaled, dX = 0)

- The "dX=0" ensures that only station-days from the same day are compared to each other
- The variance is quite small and does not level off (no "sill"). This is a sign that there is probably a global trend. My guess is that this reflects the fact that from NW to SE the amount and frequency of rain increases
- Distance is in degrees of latitude or longitude. A better approach would be to choose a local map projection and then use km



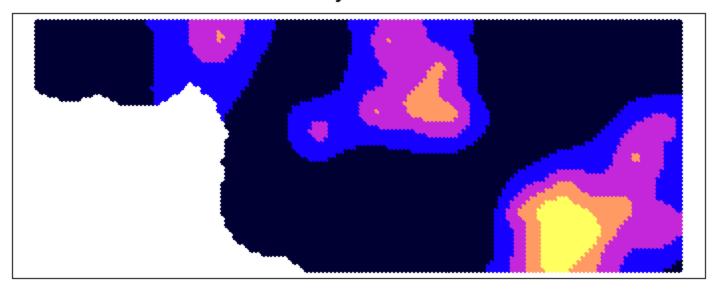
Step 2: Variogram Model Selection



The psill parameter had no effect. <u>The Pow model seemed to fit the best</u>, although it has no nugget effect whereas both the Sph and Exp models include the nugget. But the rapid rise approximates a nugget very well, I think. I did not include any measurement noise

Example Fitted Day

Day = 318



[-0.06335,0.1093]
(0.1093,0.2819]
(0.2819,0.4546]
(0.4546,0.6272]
(0.6272,0.7998]

Problem 2: Estimating $\psi(x_i)$ at stations where $r_i = 0$ on a given day

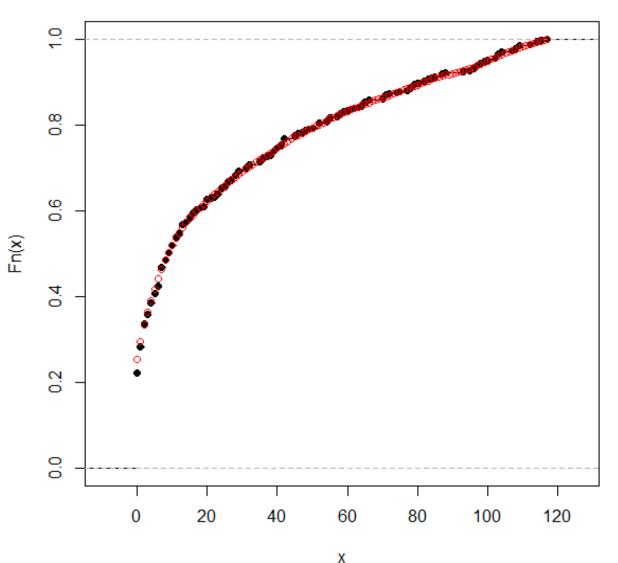
- Let $\tilde{R} = (\tilde{r}_1, ..., \tilde{r}_n)$ be the reported rain values
- Let $R = (r_1, \dots, r_n)$ be the true ψ values
- Let (d_1, \ldots, d_n) be the binary detection variables
- Let $\theta_1, \dots, \theta_n$ be the Bernoulli parameters. On each day, $d_i \sim Bern(d_i | \theta_i)$
- Let C be a candidate set of stations where we hypothesize that $\psi(x_i) > 0$ but $d_i = 0$. All other stations are hypothesized to either have $\psi(x_i) = 0$ or $d_i = 1$ (or both).
- We wish to estimate $P(C|\tilde{R})$

Probabilistic Model

- You might think that we could just simulate observations from the fitted Gaussian Process using γ. But I don't think this will work well, because the GP doesn't know how much rain to generate each day (because it doesn't model the mean of the GP).
- Proposed model:
 - Let #R be the number of stations with $r_i > 0$: $|\{i : r_i > 0\}|$
 - Let $\#\tilde{R}$ be the number of stations with $\tilde{r}_i > 0$
 - Estimate $P(\#R|\#\tilde{R})$
 - Fit P(#R) to the training data
 - Given a value for $\theta_i = \theta$, we know that $P(\#\tilde{R} | \#R)$ has a binomial distribution where we draw #R Bernoulli variables each with probability θ of being 1 and sum the values. Hence,
 - $P(\#R \| \#\tilde{R}) = \frac{1}{Z} P(\#\tilde{R} \| \#R) P(\#R)$ where $Z = \sum_{\#r} P(\#\tilde{R} \| \#R = \#r) P(\#R = \#r)$
 - Given C, we know that $\#R = \#\tilde{R} + |C|$ and each station in C must have $\psi > 0$. Hence, the probability is
 - $P(C|\tilde{R}) = P(|C| + \#\tilde{R}|\#\tilde{R})P(C > 0|\tilde{R} \setminus C)$
 - This second probability can be computed from the GP

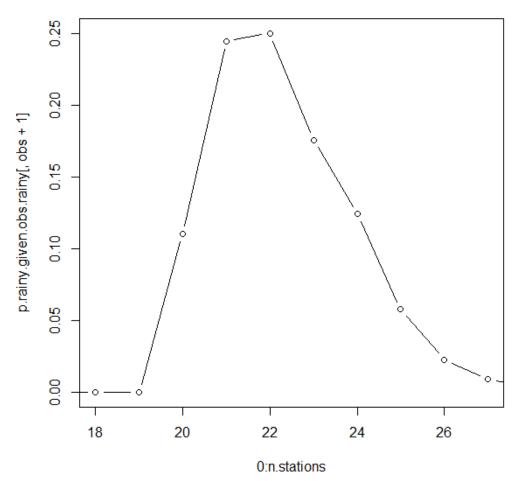
Fitting P(#R)

- Using the 366 days, draw 100 bootstrap samples and compute P(#R) by pooling all of them. This smooths out the naïve estimate of P(#R) that we could get from just the 366 days
- The black points are the empirical CDF for P(#R) and the red points are the bootstrap version. We can see it has interpolated days where there where #R = x had no observations.



Computing $P(\#R|\#\tilde{R})$

- I assumed a fixed $\theta = 0.9$ for all stations. A weakness of the model is that it requires a fixed θ .
- Here is a typical case. If #R = 20 then the most likely value for #R is 21 or 22 but #R could be 20 or 23, 24, 25, 26. Larger values are highly unlikely

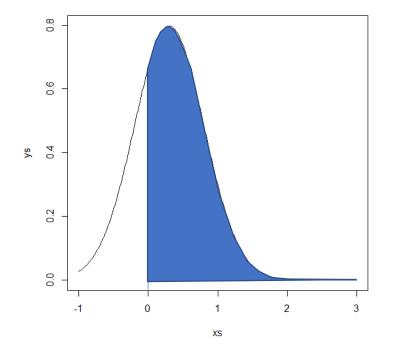


P(R|obs=20)

Computing $P(C > 0 | \tilde{R} \setminus C)$

- \tilde{R} is the observed rain
- $\tilde{R} \setminus C$ is the observed rain except at the stations in C
- Kriging gives us the predicted mean and variance of r_i for stations in C conditioned on the r_i values for $i \in \tilde{R} \setminus C$
 - We could request this as a multivariate Gaussian, but I treated the results as if the covariance matrix was diagonal
- $P(c_i > 0 | \tilde{R} \setminus C)$ is the right tail measured from 0
- $P(C|\tilde{R} \setminus C) = \prod_{i \in C} P(c_i \ge 0|\tilde{R} \setminus C)$
- Therefore:

$$P(C|\tilde{R}) = P(|C| + \#\tilde{R}|\#\tilde{R}) \prod_{i \in C} P(c_i \ge 0|\tilde{R} \setminus C)$$



Estimating ψ at the stations with $ilde{r}=0$

- Two approximation algorithms
 - Greedy construction of the single MLE $\ensuremath{\mathcal{C}}$
 - Depth-first search of all "interesting" C candidate sets

Algorithm 1: Greedy MLE Method

- Let $Z = \{i | \tilde{r}_i = 0\}$
- $C \coloneqq \emptyset$
- $\ell \coloneqq P(C|\tilde{R})$
- repeat
 - $i^* \coloneqq \arg \max_i P(C \cup \{i\} | \tilde{R} \setminus (C \cup \{i\}))$
 - Let $\ell^* \coloneqq P(C \cup \{i^*\} | \tilde{R} \setminus (C \cup \{i^*\}))$
 - If $\ell^* < \ell$ return C
 - $C \coloneqq C \cup \{i^*\}$

Greedy Method Results

- On days with a small amount of rain, the greedy method severely underestimates *C*
 - In 10 trials on day 318, it never found the correct stations
 - average true *C* contained 1.4 stations
 - computed *C* was always a single (incorrect) station 83
- On days with a large amount of rain, the greedy method often found the exact answer
 - In 10 trials on day 316, it found an average of 9.4 correct stations and missed an average of 2.0 stations. It was exactly correct in 5 trials

Algorithm 2: Depth-First Search of all Candidates

- The goal is to estimate for each station $i \in Z$, the probability that $r_i > 0$
- Plan:
 - Let \mathcal{C} be the set of all possible candidate sets \mathcal{C}
 - Compute $P(C|\tilde{R} \setminus C)$ for each one
 - For each station $i, P(r_i > 0 | \tilde{R}) \propto \sum_C \mathbb{I}[i \in C] P(C | \tilde{R} \setminus C)$
- Problem: There are $2^{|Z|}$ possible candidate sets
- Solution: Depth-First Search with a likelihood cutoff
 - Let ℓ_{min} be the minimum likelihood of a candidate for it to be retained
 - DFS(C):
 - Compute $\ell \coloneqq P(C|\tilde{R} \setminus C)$
 - If $\ell > \ell_{min}$ add \hat{C} to C
 - If $P(|C| + \#\tilde{R}|\#\tilde{R}) \times \max_{\#\tilde{R}} P(\#R|\#\tilde{R}) > \ell_{min}$
 - Let $j^* := \max_i j \in \mathcal{C}$ be the highest-numbered station in \mathcal{C}
 - For $j \in \{j^* + 1, ..., |Z|\} DFS(C \cup \{j\})$
 - Start by invoking *DFS*(Ø)

Performance of DFS method on day 320

Day = 320

[-0.004674,0.1452]
(0.1452,0.295]
(0.295,0.4449]
(0.4449,0.5947]
(0.5947,0.7445]

Performance of DFS method on day 320

Correct $C = \{10, 19, 53, 66\}$

Top 10 Candidates

Threshold	# candidates	1	2	3	4	5	6	7	8	9	10
0.1	98	53	85	66	59	<u>80</u>	19	95	45	12	94
0.05	7090	53	85	66	<u>80</u>	59	19	45	95	12	94
0.025	129,494	53	85	66	59	19	95	45	12	94	69

Probability estimates

Threshold	# candidates	1	2	3	4	5	6	7	8	9	10
0.1	98	0.93	0.07	0.04	0.03	0.02	0.02	0.02	0.01	0.01	0.01
0.05	7090	0.40	0.04	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03
0.025	129,494	0.24	0.07	0.07	0.06	0.05	0.05	0.05	0.05	0.05	0.05

Greedy MLE = **{53**,85}

Station 10 is consistently missed by both methods

Summary of MLE estimation experiments

- Greedy MLE is not very good
- DFS with a high threshold is not too bad but its probability estimates are poor

Gaussian Noise Approximation

- Instead of the Bernoulli "noise" model, we can fit the GP with a Gaussian noise model.
 - The fitted model no longer exactly interpolates the data at the given stations
 - Therefore, at stations where r = 0, $\psi(x_i)$ may be > 0 because of nearby stations that reported r > 0

Variogram Models with Noise

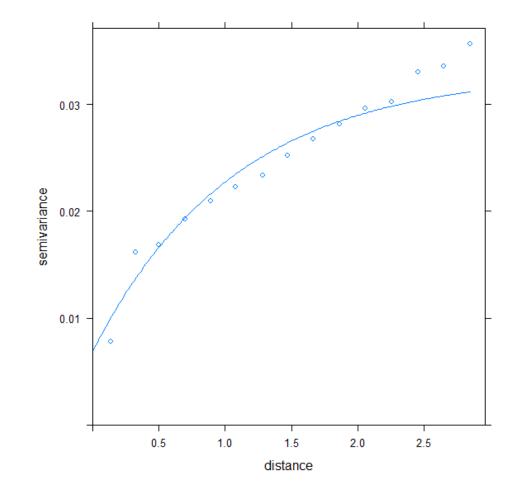
- The gstat variogram model vgm(psill = 1, model = Pow, nugget = 1) is not compatible with a noise parameter. However, the Exp and Sph models do allow a noise parameter if you remove the nugget argument
- I chose the model
 - vgm(psill = 1, model = "Exp", Err = error.level)
 - The table at right shows the RMS error between r and \hat{r} (predicted by Kriging)
 - The amount of error specified in the model had no effect as long as it was nonzero

vel	rms						
0.0	3.423625e-15						
0.1	1.807769e+00						
0.2	1.807763e+00						
0.3	1.807755e+00						
0.4	1.807746e+00						
0.5	1.807739e+00						
0.6	1.807733e+00						
0.7	1.807728e+00						
0.8	1.807724e+00						
0.9	1.806990e+00						
	0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8						

Chosen Variogram Model

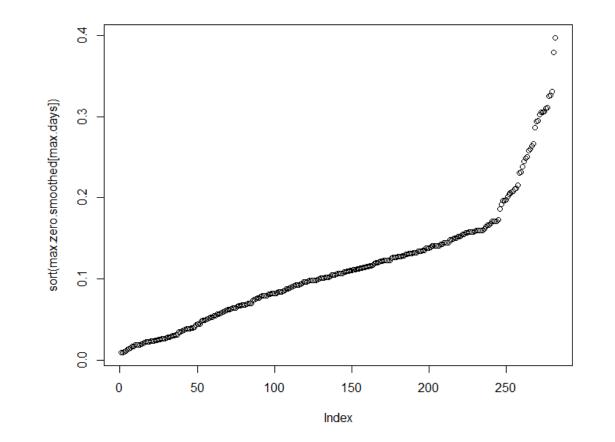
- Adding the Err term makes no visible change in the variogram model
- But when applied to make predictions with kriging, it no longer interpolates the data points

vgm(psill = NA, model = Exp, Err = 0.1)



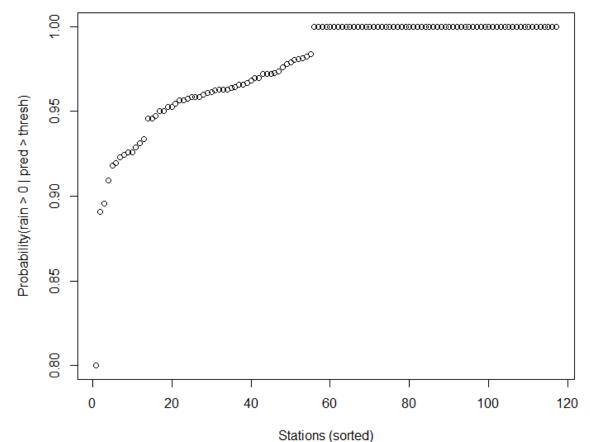
Choosing the zero threshold ϵ

- The predicted rain \hat{r} is never exactly zero, so we need to define a threshold
- For each day with total rain > 0, we compute the maximum value of \hat{r} at any station reporting r=0
- If we set the threshold at 0.4, we would get no "false nonzero" cases. However, because of local heterogeneity of precipitation, we expect to have a certain number of such false nonzero cases (where r = 0 but $\hat{r} > \epsilon$, our threshold)
- We chose $\epsilon = 0.18$, as this is right at the "elbow" where there seems to be some regime change



Baseline θ estimates

- With this value for ε and no simulated blocked sensors, we can estimate the θ values
- One station seems to have quite a low value



Estimated theta values

CUSUM Detection Statistic

- Cortese (2015) PhD thesis "Change Point Detection and Estimation in Sequences of Dependent Random Variables" gives a very nice review of CUSUM methods for Boolean random variables
- Given a sequence of Bernoulli random variables x_1, \ldots, x_n
 - H_0 : All variables share the same Bernoulli parameter p (no change point)
 - $H_a: x_1, \dots, x_t$ have parameter θ_1 and x_{t+1}, \dots, x_n have parameter θ_2
- Uncorrected CUSUM statistic compares the running total to the expected running total (based on H_0) at each time t:

$$S_t = \sum_{j=1}^t x_j - \frac{t}{n} \sum_{j=1}^n x_j = \sum_{j=1}^n a_j x_j, \text{ where } a_j = \begin{cases} 1 - \frac{t}{n} & \text{if } 1 \le j \le t, \\ -\frac{t}{n} & \text{if } t+1 \le j \le n. \end{cases}$$

Standardizing the CUSUM statistic

• The standard deviation of the CUSUM statistic under H_0 is

•
$$\hat{\sigma}_t = \sqrt{p(1-p)\frac{t}{n}\left(1-\frac{t}{n}\right)}$$

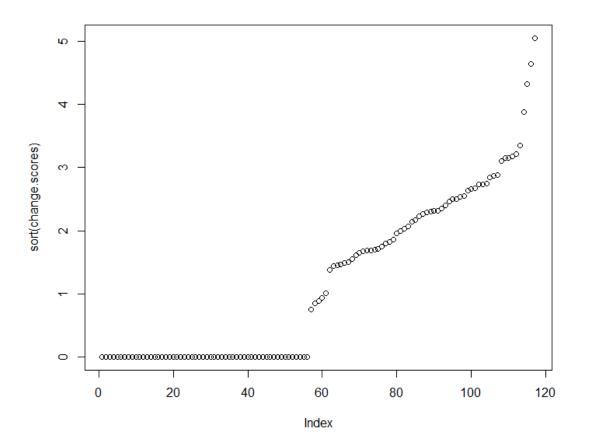
- It is larger in the middle of the sequence and smaller at the ends
- The standardized CUSUM statistic is

•
$$T_t = \frac{CUMSUM_t}{\widehat{\sigma}_t} = \frac{S_t}{\widehat{\sigma}_t \sqrt{n}}$$

- Standardizing allows us to compare T_t values across all t = 1, ..., n
- The asymptotic sampling distribution under the null is known, but we will choose a significance cutoff empirically

Distribution of T_t under the null

- For our 117 stations, for Oklahoma data from 2008 (285 rainy days), we obtain the following distribution of T_t
- This suggests choosing a threshold Δ around 3.3-3.5 which will give us 4 false alarms even without inserting any faults

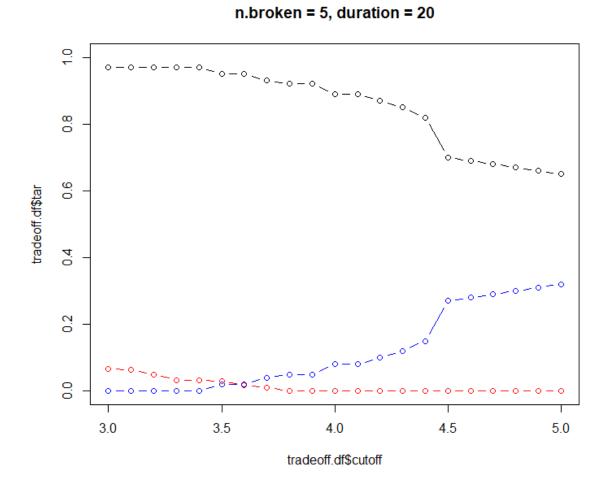


Methodology for Simulating Blocked Sensors

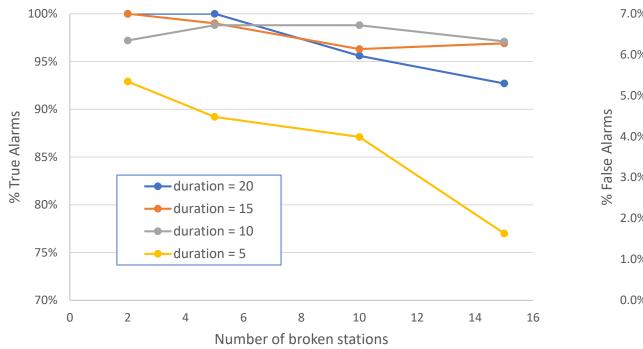
- Choose *B* stations to simulate a blockage
- For each station $b \in \{1, ..., B\}$, choose a time t such that there are m days $j \in [t, 366]$ with $r_{b,j} > 0$
- Replace those values with zero
 - An additional condition on t is that there be at least 10 days $j \in [1, t 1]$ with $r_{b,j} > 0$ so that the shift from $r_{b,j} > 0$ to $r_{b,j} = 0$ can be detected
- For each rainy day of the year
 - Fit the kriging model and compute $\hat{r}_{i,j} = \psi(i,j)$ for each station *i* and day *j*
 - If $\hat{r}_{i,j} \ge 0.18$ and $r_{i,j} = 0$, then $d_{i,j} = 0$ else $d_{i,j} = 1$
 - Note that because of the inserted zeros, the number of values where $d_{b,j} = 0$ is usually much less than m. For example, we might use m = 20 but only observe between 2 and 7 days with $d_{b,j} = 0$
- Compute $T_{i,t}$ for $t \in [1,366]$ and let T_i^* be the largest value (and t_i^* be the corresponding time)
- If $T_i^* > \Delta$, then declare station *i* to be blocked starting at time t_i^*
 - We also require $\sum_{t=t^*}^n d_{i,t} \ge 2$. This eliminates many false alarms without introducing any missed alarms
 - It requires a minimum post-change-point sample size of 2

Choosing Δ

- Run 20 replicates with B = 5stations blocked with m = 20nonzero readings and aggregate all of the T_i^* scores
- Vary ∆ and compute the true alarm rate (black), false alarm rate (red), and missed alarm rate (blue)
- Selected $\Delta = 3.4$
 - We do not want to miss broken sensors
 - This is the largest value that has zero missed alarms

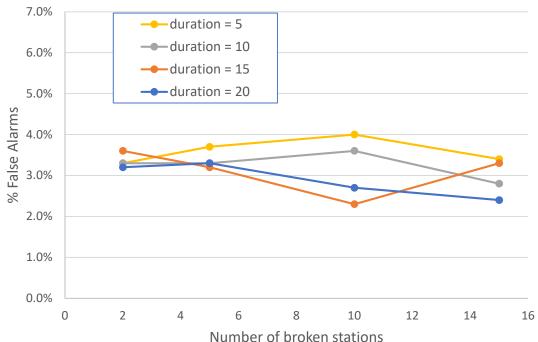


True Alarms and False Alarms



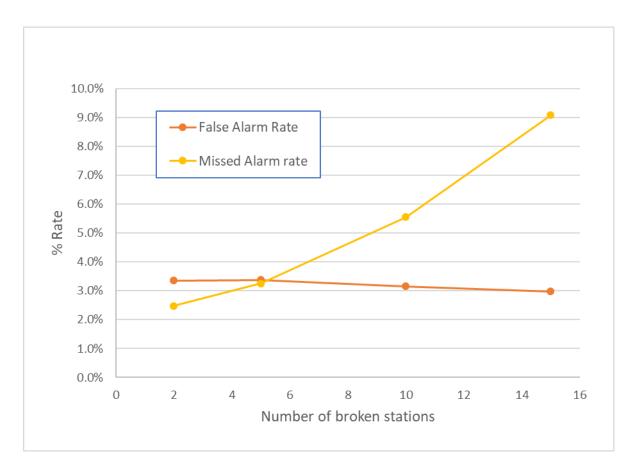
True Alarms

False Alarms



Aggregated Experiment Summary

- False Alarm Rate is basically constant at 3%
- Missed Alarm Rate increases as we break more stations
 - More broken stations cause ψ to be zero in more other stations
 - This prevents us from inferring *d* and detecting the blockage
 - 15/117 = 12.8% of stations blocked
 - We are detecting >90% of blocked stations



Summary

- This method is simple and very promising
 - I think we should test it on TAHMO data
 - I hope we can deploy it
 - Deployment will require lots of additional research and engineering
- This method is a hack
 - It would be nice to have a more elegant solution
 - Cirra has a variational idea he is studying
 - Why doesn't the Err parameter in the variogram model affect the smoothness of the fitted model?