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Fitting a Kriging model to the Oklahoma data

• Data: 366 days from 2008 OK Mesonet. 117 stations.
• Removed observations with QA flags indicating bad data. Most days 

there were only 116 stations with good data.
• Removed days if there was no rain anywhere in the state
• Normalized the precipitation numbers each day so that the maximum 

reported value is 1.0
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Two Model-Fitting Problems

• Problem 1: Fit a spatial Gaussian process (“Kriging”) model. This involves 
fitting a semivariogram model 𝛾𝛾, which defines the kernel for the GP

• In Oklahoma, we have well-cleaned data, so I was able to do this. 
• In Africa, we could use manually-cleaned data from TAHMO

• Problem 2: For each day, we want to estimate the potential rain 𝜓𝜓 at each 
station 

• For stations that reported 𝑟𝑟𝑖𝑖 > 0, we define 𝜓𝜓 𝑥𝑥𝑖𝑖 = 𝑟𝑟𝑖𝑖 and 𝑑𝑑𝑖𝑖 = 1
• For stations that reported 𝑟𝑟𝑖𝑖 = 0, this could be due to a detection failure (𝑑𝑑𝑖𝑖 = 0) 

with 𝜓𝜓 𝑥𝑥𝑖𝑖 > 0 or it could be a true zero with 𝜓𝜓 𝑥𝑥𝑖𝑖 = 0
• We are particularly interested in the 𝜓𝜓 𝑥𝑥𝑖𝑖 > 0 and 𝑑𝑑𝑖𝑖 = 0, because that is a 

“training example” for estimating 𝜃𝜃𝑖𝑖, probability that 𝑑𝑑𝑖𝑖 = 1
• In Problem 2, we assume we know 𝛾𝛾
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Solving Problem 1: 
Step 1: The Empirical Semivariogram

• R gstat package
• Pooling data across all (non-zero) days

vg <- variogram(rain ~ day, data = df.year.scaled, dX = 0)

• The “dX=0” ensures that only station-days 
from the same day are compared to each 
other

• The variance is quite small and does not level 
off (no “sill”). This is a sign that there is 
probably a global trend. My guess is that this 
reflects the fact that from NW to SE the 
amount and frequency of rain increases

• Distance is in degrees of latitude or longitude. 
A better approach would be to choose a local 
map projection and then use km
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Step 2: Variogram Model Selection

The psill parameter had no effect. The Pow model seemed to fit the best, although it has no nugget effect
whereas both the Sph and Exp models include the nugget. But the rapid rise approximates a nugget
very well, I think.
I did not include any measurement noise
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Example Fitted Day
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Problem 2: Estimating 𝜓𝜓 𝑥𝑥𝑖𝑖 at stations 
where 𝑟𝑟𝑖𝑖 = 0 on a given day
• Let �𝑅𝑅 = �𝑟𝑟1, … , �𝑟𝑟𝑛𝑛 be the reported rain values
• Let 𝑅𝑅 = 𝑟𝑟1, … , 𝑟𝑟𝑛𝑛 be the true 𝜓𝜓 values
• Let 𝑑𝑑1, … ,𝑑𝑑𝑛𝑛 be the binary detection variables
• Let 𝜃𝜃1, … ,𝜃𝜃𝑛𝑛 be the Bernoulli parameters. On each day, 𝑑𝑑𝑖𝑖 ∼

Bern 𝑑𝑑𝑖𝑖 𝜃𝜃𝑖𝑖
• Let 𝐶𝐶 be a candidate set of stations where we hypothesize that 
𝜓𝜓 𝑥𝑥𝑖𝑖 > 0 but 𝑑𝑑𝑖𝑖 = 0. All other stations are hypothesized to either 
have 𝜓𝜓 𝑥𝑥𝑖𝑖 = 0 or 𝑑𝑑𝑖𝑖 = 1 (or both). 

• We wish to estimate 𝑃𝑃 𝐶𝐶 �𝑅𝑅
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Probabilistic Model
• You might think that we could just simulate observations from the fitted 

Gaussian Process using 𝛾𝛾. But I don’t think this will work well, because the 
GP doesn’t know how much rain to generate each day (because it doesn’t 
model the mean of the GP). 

• Proposed model:
• Let #𝑅𝑅 be the number of stations with 𝑟𝑟𝑖𝑖 > 0: 𝑖𝑖 ∶ 𝑟𝑟𝑖𝑖 > 0
• Let # �𝑅𝑅 be the number of stations with �𝑟𝑟𝑖𝑖 > 0
• Estimate 𝑃𝑃 #𝑅𝑅 # �𝑅𝑅

• Fit 𝑃𝑃 #𝑅𝑅 to the training data
• Given a value for 𝜃𝜃𝑖𝑖 = 𝜃𝜃, we know that 𝑃𝑃(# �𝑅𝑅|#𝑅𝑅) has a binomial distribution where we draw 

#𝑅𝑅 Bernoulli variables each with probability 𝜃𝜃 of being 1 and sum the values. Hence,
• 𝑃𝑃 #𝑅𝑅 # �𝑅𝑅 = 1

𝑍𝑍
𝑃𝑃 # �𝑅𝑅 #𝑅𝑅 𝑃𝑃(#𝑅𝑅) where 𝑍𝑍 = ∑#𝑟𝑟 𝑃𝑃 # �𝑅𝑅 #𝑅𝑅 = #𝑟𝑟 𝑃𝑃(#𝑅𝑅 = #𝑟𝑟)

• Given 𝐶𝐶, we know that #𝑅𝑅 = # �𝑅𝑅 + |𝐶𝐶| and each station in 𝐶𝐶 must have 𝜓𝜓 > 0. 
Hence, the probability is

• 𝑃𝑃 𝐶𝐶 �𝑅𝑅 = 𝑃𝑃 𝐶𝐶 + # �𝑅𝑅 # �𝑅𝑅 𝑃𝑃 𝐶𝐶 > 0 �𝑅𝑅 ∖ 𝐶𝐶
• This second probability can be computed from the GP
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Fitting 𝑃𝑃 #𝑅𝑅
• Using the 366 days, draw 100 

bootstrap samples and compute 
𝑃𝑃 #𝑅𝑅 by pooling all of them. This 
smooths out the naïve estimate of 
𝑃𝑃 #𝑅𝑅 that we could get from just 
the 366 days

• The black points are the empirical 
CDF for 𝑃𝑃(#𝑅𝑅) and the red points 
are the bootstrap version. We can 
see it has interpolated days where 
there where #𝑅𝑅 = 𝑥𝑥 had no 
observations.
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Computing 𝑃𝑃 #𝑅𝑅 # �𝑅𝑅

• I assumed a fixed 𝜃𝜃 = 0.9 for all 
stations. A weakness of the 
model is that it requires a fixed 
𝜃𝜃.

• Here is a typical case. If # �𝑅𝑅 = 20
then the most likely value for #𝑅𝑅
is 21 or 22 but #𝑅𝑅 could be 20 or 
23, 24, 25, 26. Larger values are 
highly unlikely
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Computing 𝑃𝑃 𝐶𝐶 > 0 �𝑅𝑅 ∖ 𝐶𝐶
• �𝑅𝑅 is the observed rain
• �𝑅𝑅 ∖ 𝐶𝐶 is the observed rain except at the stations in 𝐶𝐶
• Kriging gives us the predicted mean and variance of 𝑟𝑟𝑖𝑖

for stations in 𝐶𝐶 conditioned on the 𝑟𝑟𝑖𝑖 values for 𝑖𝑖 ∈�𝑅𝑅 ∖ 𝐶𝐶
• We could request this as a multivariate Gaussian, but I 

treated the results as if the covariance matrix was diagonal
• 𝑃𝑃 𝑐𝑐𝑖𝑖 > 0 �𝑅𝑅 ∖ 𝐶𝐶 is the right tail measured from 0

• 𝑃𝑃 𝐶𝐶 �𝑅𝑅 ∖ 𝐶𝐶 = ∏𝑖𝑖∈𝐶𝐶 𝑃𝑃 𝑐𝑐𝑖𝑖 ≥ 0 �𝑅𝑅 ∖ 𝐶𝐶
• Therefore:

𝑃𝑃 𝐶𝐶 �𝑅𝑅 = 𝑃𝑃 𝐶𝐶 + # �𝑅𝑅 # �𝑅𝑅 �
𝑖𝑖∈𝐶𝐶

𝑃𝑃 𝑐𝑐𝑖𝑖 ≥ 0 �𝑅𝑅 ∖ 𝐶𝐶
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Estimating 𝜓𝜓 at the stations with 𝑟̃𝑟 = 0

• Two approximation algorithms
• Greedy construction of the single MLE 𝐶𝐶
• Depth-first search of all “interesting” 𝐶𝐶 candidate sets
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Algorithm 1: Greedy MLE Method

• Let 𝑍𝑍 = {𝑖𝑖|�𝑟𝑟𝑖𝑖 = 0}
• 𝐶𝐶 ≔ ∅
• ℓ ≔ 𝑃𝑃 𝐶𝐶 �𝑅𝑅
• repeat

• 𝑖𝑖∗ ≔ arg max
𝑖𝑖
𝑃𝑃 𝐶𝐶 ∪ 𝑖𝑖 �𝑅𝑅 ∖ 𝐶𝐶 ∪ 𝑖𝑖

• Let ℓ∗ ≔ 𝑃𝑃 𝐶𝐶 ∪ 𝑖𝑖∗ �𝑅𝑅 ∖ 𝐶𝐶 ∪ 𝑖𝑖∗

• If ℓ∗ < ℓ return 𝐶𝐶
• 𝐶𝐶 ≔ 𝐶𝐶 ∪ 𝑖𝑖∗
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Greedy Method Results

• On days with a small amount of rain, the greedy method severely 
underestimates 𝐶𝐶

• In 10 trials on day 318, it never found the correct stations
• average true 𝐶𝐶 contained 1.4 stations
• computed 𝐶𝐶 was always a single (incorrect) station 83

• On days with a large amount of rain, the greedy method often found 
the exact answer

• In 10 trials on day 316, it found an average of 9.4 correct stations and missed 
an average of 2.0 stations. It was exactly correct in 5 trials
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Algorithm 2: Depth-First Search of all 
Candidates
• The goal is to estimate for each station 𝑖𝑖 ∈ 𝑍𝑍, the probability that 𝑟𝑟𝑖𝑖 > 0
• Plan:

• Let 𝒞𝒞 be the set of all possible candidate sets 𝐶𝐶
• Compute 𝑃𝑃 𝐶𝐶 �𝑅𝑅 ∖ 𝐶𝐶 for each one
• For each station 𝑖𝑖, 𝑃𝑃 𝑟𝑟𝑖𝑖 > 0 �𝑅𝑅 ∝ ∑𝐶𝐶 𝕀𝕀 𝑖𝑖 ∈ 𝐶𝐶 𝑃𝑃 𝐶𝐶 �𝑅𝑅 ∖ 𝐶𝐶

• Problem: There are 2 𝑍𝑍 possible candidate sets
• Solution: Depth-First Search with a likelihood cutoff

• Let ℓ𝑚𝑚𝑚𝑚𝑚𝑚 be the minimum likelihood of a candidate for it to be retained
• 𝐷𝐷𝐷𝐷𝐷𝐷(𝐶𝐶):

• Compute ℓ ≔ 𝑃𝑃 𝐶𝐶 �𝑅𝑅 ∖ 𝐶𝐶
• If ℓ > ℓ𝑚𝑚𝑚𝑚𝑚𝑚 add 𝐶𝐶 to 𝒞𝒞
• If 𝑃𝑃 𝐶𝐶 + # �𝑅𝑅 # �𝑅𝑅 × max

#𝑅𝑅
𝑃𝑃 #𝑅𝑅 # �𝑅𝑅 > ℓ𝑚𝑚𝑚𝑚𝑚𝑚

• Let 𝑗𝑗∗ ≔ max
𝑗𝑗

𝑗𝑗 ∈ 𝐶𝐶 be the highest-numbered station in 𝐶𝐶
• For 𝑗𝑗 ∈ 𝑗𝑗∗ + 1, … , 𝑍𝑍 𝐷𝐷𝐷𝐷𝐷𝐷 𝐶𝐶 ∪ 𝑗𝑗

• Start by invoking 𝐷𝐷𝐷𝐷𝐷𝐷 ∅
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Performance of DFS method on day 320
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Performance of DFS method on day 320

Threshold # candidates 1 2 3 4 5 6 7 8 9 10
0.1 98 53 85 66 59 80 19 95 45 12 94
0.05 7090 53 85 66 80 59 19 45 95 12 94
0.025 129,494 53 85 66 59 19 95 45 12 94 69

Top 10 Candidates
Correct 𝐶𝐶 = {10, 19, 53, 66}

Probability estimates
Threshold # candidates 1 2 3 4 5 6 7 8 9 10
0.1 98 0.93 0.07 0.04 0.03 0.02 0.02 0.02 0.01 0.01 0.01
0.05 7090 0.40 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03
0.025 129,494 0.24 0.07 0.07 0.06 0.05 0.05 0.05 0.05 0.05 0.05

Greedy MLE = {53,85}
Station 10 is consistently missed by both methods
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Summary of MLE estimation experiments

• Greedy MLE is not very good
• DFS with a high threshold is not too bad but its probability estimates 

are poor
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Gaussian Noise Approximation

• Instead of the Bernoulli “noise” model, we can fit the GP with a 
Gaussian noise model. 

• The fitted model no longer exactly interpolates the data at the given stations 
• Therefore, at stations where 𝑟𝑟 = 0, 𝜓𝜓(𝑥𝑥𝑖𝑖) may be > 0 because of nearby 

stations that reported 𝑟𝑟 > 0
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Variogram Models with Noise

• The gstat variogram model vgm(psill = 1, 
model = Pow, nugget = 1) is not compatible 
with a noise parameter. However, the Exp 
and Sph models do allow a noise parameter 
if you remove the nugget argument

• I chose the model 
• vgm(psill = 1, model = "Exp",  Err = error.level)
• The table at right shows the RMS error between 𝑟𝑟

and 𝑟̂𝑟 (predicted by Kriging)
• The amount of error specified in the model had 

no effect as long as it was nonzero
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error.level rms
1          0.0 3.423625e-15
2          0.1 1.807769e+00
3          0.2 1.807763e+00
4          0.3 1.807755e+00
5          0.4 1.807746e+00
6          0.5 1.807739e+00
7          0.6 1.807733e+00
8          0.7 1.807728e+00
9          0.8 1.807724e+00
10         0.9 1.806990e+00



Chosen Variogram Model

• Adding the Err term makes no 
visible change in the variogram 
model

• But when applied to make 
predictions with kriging, it no 
longer interpolates the data 
points
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Choosing the zero threshold 𝜖𝜖
• The predicted rain 𝑟̂𝑟 is never exactly zero, so 

we need to define a threshold 
• For each day with total rain > 0, we compute 

the maximum value of 𝑟̂𝑟 at any station 
reporting 𝑟𝑟 = 0

• If we set the threshold at 0.4, we would get 
no “false nonzero” cases. However, because 
of local heterogeneity of precipitation, we 
expect to have a certain number of such false 
nonzero cases (where 𝑟𝑟 = 0 but 𝑟̂𝑟 > 𝜖𝜖, our 
threshold)

• We chose 𝜖𝜖 = 0.18, as this is right at the 
“elbow” where there seems to be some 
regime change
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Baseline 𝜃𝜃 estimates

• With this value for 𝜖𝜖 and no 
simulated blocked sensors, we can 
estimate the 𝜃𝜃 values

• One station seems to have quite a 
low value
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CUSUM Detection Statistic
• Cortese (2015) PhD thesis “Change Point Detection and Estimation in 

Sequences of Dependent Random Variables” gives a very nice review 
of CUSUM methods for Boolean random variables

• Given a sequence of Bernoulli random variables 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛
• 𝐻𝐻0: All variables share the same Bernoulli parameter 𝑝𝑝 (no change point)
• 𝐻𝐻𝑎𝑎: 𝑥𝑥1, … , 𝑥𝑥𝑡𝑡 have parameter 𝜃𝜃1 and 𝑥𝑥𝑡𝑡+1, … , 𝑥𝑥𝑛𝑛 have parameter 𝜃𝜃2

• Uncorrected CUSUM statistic compares the running total to the 
expected running total (based on 𝐻𝐻0) at each time 𝑡𝑡:
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Standardizing the CUSUM statistic

• The standard deviation of the CUSUM statistic under 𝐻𝐻0 is

• �𝜎𝜎𝑡𝑡 = 𝑝𝑝 1 − 𝑝𝑝 𝑡𝑡
𝑛𝑛

1 − 𝑡𝑡
𝑛𝑛

• It is larger in the middle of the sequence and smaller at the ends

• The standardized CUSUM statistic is
• 𝑇𝑇𝑡𝑡 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑀𝑀𝑡𝑡

�𝜎𝜎𝑡𝑡
= 𝑆𝑆𝑡𝑡

�𝜎𝜎𝑡𝑡 𝑛𝑛

• Standardizing allows us to compare 𝑇𝑇𝑡𝑡 values across all 𝑡𝑡 = 1, … ,𝑛𝑛
• The asymptotic sampling distribution under the null is known, but we 

will choose a significance cutoff empirically
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Distribution of 𝑇𝑇𝑡𝑡 under the null

• For our 117 stations, for Oklahoma 
data from 2008 (285 rainy days), we 
obtain the following distribution of 
𝑇𝑇𝑡𝑡

• This suggests choosing a threshold Δ
around 3.3-3.5 which will give us 4 
false alarms even without inserting 
any faults
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Methodology for Simulating Blocked Sensors

• Choose 𝐵𝐵 stations to simulate a blockage
• For each station 𝑏𝑏 ∈ 1, … ,𝐵𝐵 , choose a time 𝑡𝑡 such that there are 𝑚𝑚 days 𝑗𝑗 ∈ [𝑡𝑡, 366] with 𝑟𝑟𝑏𝑏,𝑗𝑗 > 0
• Replace those values with zero

• An additional condition on 𝑡𝑡 is that there be at least 10 days 𝑗𝑗 ∈ [1, 𝑡𝑡 − 1] with 𝑟𝑟𝑏𝑏,𝑗𝑗 > 0 so that the shift from 
𝑟𝑟𝑏𝑏,𝑗𝑗 > 0 to 𝑟𝑟𝑏𝑏,𝑗𝑗 = 0 can be detected

• For each rainy day of the year
• Fit the kriging model and compute 𝑟̂𝑟𝑖𝑖,𝑗𝑗 = 𝜓𝜓 𝑖𝑖, 𝑗𝑗 for each station 𝑖𝑖 and day 𝑗𝑗
• If 𝑟̂𝑟𝑖𝑖,𝑗𝑗 ≥ 0.18 and 𝑟𝑟𝑖𝑖,𝑗𝑗 = 0, then 𝑑𝑑𝑖𝑖,𝑗𝑗 = 0 else 𝑑𝑑𝑖𝑖,𝑗𝑗 = 1
• Note that because of the inserted zeros, the number of values where 𝑑𝑑𝑏𝑏,𝑗𝑗 = 0 is usually much less than 𝑚𝑚. For 

example, we might use 𝑚𝑚 = 20 but only observe between 2 and 7 days with 𝑑𝑑𝑏𝑏,𝑗𝑗 = 0
• Compute 𝑇𝑇𝑖𝑖,𝑡𝑡 for 𝑡𝑡 ∈ 1,366 and let 𝑇𝑇𝑖𝑖∗ be the largest value (and 𝑡𝑡𝑖𝑖∗ be the corresponding time)
• If 𝑇𝑇𝑖𝑖∗ > Δ, then declare station 𝑖𝑖 to be blocked starting at time 𝑡𝑡𝑖𝑖∗

• We also require ∑𝑡𝑡=𝑡𝑡∗𝑛𝑛 𝑑𝑑𝑖𝑖,𝑡𝑡 ≥ 2. This eliminates many false alarms without introducing any missed alarms
• It requires a minimum post-change-point sample size of 2
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Choosing Δ
• Run 20 replicates with 𝐵𝐵 = 5

stations blocked with 𝑚𝑚 = 20
nonzero readings and aggregate 
all of the 𝑇𝑇𝑖𝑖∗ scores

• Vary Δ and compute the true 
alarm rate (black), false alarm 
rate (red), and missed alarm rate 
(blue)

• Selected Δ = 3.4
• We do not want to miss broken 

sensors
• This is the largest value that has 

zero missed alarms
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True Alarms and False Alarms
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Aggregated Experiment Summary

• False Alarm Rate is basically 
constant at 3%

• Missed Alarm Rate increases as 
we break more stations

• More broken stations cause 𝜓𝜓 to be 
zero in more other stations

• This prevents us from inferring 𝑑𝑑
and detecting the blockage

• 15/117 = 12.8% of stations blocked
• We are detecting >90% of blocked 

stations
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Summary

• This method is simple and very promising
• I think we should test it on TAHMO data
• I hope we can deploy it
• Deployment will require lots of additional research and engineering

• This method is a hack
• It would be nice to have a more elegant solution

• Cirra has a variational idea he is studying
• Why doesn’t the Err parameter in the variogram model affect the smoothness 

of the fitted model?
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