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1 Introduction

We aim to explore the use of Gaussian processes to model rainfall potential and
exploit this model to detect anomalous rain gauge readings. Faulty readings
commonly appear as:

1. Null readings when rainfall occurred

2. Extreme readings when lower rainfall occurred

Here we will focus on the initial case, zero readings when the rainfall was
greater than zero.

1.1 Gaussian Processes

Gaussian processes (GPs) can be viewed a priors over functions. For a GP, any
finite number of samples from the random process have a joint Gaussian density.
The covariance matrix of this joint Gaussian density is computed from a kernel
function. A common kernel is the radial basis function (RBF) kernel given by

κrbf(x, x
′) = σ2 exp

(
− (x− x′)2

2`2

)
. (1)

This kernel has two parameters ` and σ2. They determine the nature of functions
drawn from the GP.

Sample functions from GPs with an RBF kernel are shown in Figure 1 for
two values of `.

1.2 GP Regression and Bayesian Inference

Consider data assumed to follow the following model.

y(x) = f(x) + ε
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(a) ` = 1 (b) ` = 0.1

Figure 1: Functions drawn from a GP as lengthscale varies.

(a) Observations (b) Posterior

Figure 2: GP Regression.

where f(x) ∼ GP(0, k(x, x′)) and ε ∼ N (0, σ2). By combining the prior over f
with the likelihood induced by the noise model, we can determine the posterior
distribution of f .

p(f |y) =
p(y|f)p(f)

p(y)

With the noise assumed Gaussian, this posterior is tractable and we can draw
samples from it. In addition we can determine p(y) which is the marginal
likelihood and maximise it to obtain estimates of the kernel parameters.

1.3 Model

The rainfall is observed at L locations, x = {x1, . . . ,xL}, over T time intervals
with the potential for rain at time t

ft(x) ∼ GP(0,K). (2)

The rainfall yit observed at location i at time t is given as follows

yit =

{
fit + εit w.p θi
εit w.p 1− θi

(3)
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where εit ∼ N (0, σ2
ε ) is observation noise. If we introduce a Bernoulli random

variable dit ∼ B(θi), we can write the observation model as

yit = fitdit + εit (4)

Let yt = [y1t, . . . , yLt]
T and similarly introduce ft,dt,θ.

The joint distribution for our problem is given by

p(Y,F,D|θ,γ) =

T∏
t=1

p(yt, ft,dt|θ,γ) (5)

Where γ are the hyper-parameters controlling the nature of K. In our case we
will use an RBF kernel and therefore γ = {σ2, `}.

Let’s assume T = 1. We have

p(yt, ft,dt|θ,γ) = p(yt|ft,dt)p(ft|γ)p(dt|θ) (6)

where

p(yt|ft,dt) =

L∏
i=1

N (yit|ditfit, σ2
ε ),

p(dt|θ) =

L∏
i=1

θditi (1− θi)1−dit ,

and
p(ft|γ) = N (ft|0,Kt).

1.4 Inference

We would like to determine:

� The parameters γ,θ

� The posterior p(ft|yt)

� The predictive distribution p(f∗t |yt)

To get the parameters, we would need to maximize the marginal likelihood

γ∗,θ∗ = arg max
θ,γ

∑
dt

∫
p(yt, ft,dt|θ,γ)dft

This is intractable due to the sum over all possible dt. We proceed via variational
inference where we optimize the lower bound on the marginal likelihood.

log p(yt|θ,γ) ≥ E{log p(yt, ft,dt|θ,γ)} − E{log q(ft,dt)} (7)

where

q(ft,dt) = q(ft)

L∏
i=1

q(dit)
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(a) Data with no anomaly (b) Fifth observation ‘anomalous’

Figure 3: Toy data generation.

is the variational approximation to the true posterior.
We proceed as in [1] to derive the variational approximation to the posterior

as well as the hyperparameters. We find that

q(ft) = N (ft|µf ,Σf )

and
q(dit) = ηditi (1− ηi)1−dit

1.5 Experiments

1.5.1 1D Toy Example

We explore θ∗ and the predictive mean in a 1D example where the observations
are drawn from a GP with a squared exponential kernel. See Figure 3. We
generate sample data and introduce a single anomaly. We then run the VB
algorithm and determine θ∗ and the predictive mean. Figure 4, shows a com-
parison of model fits for an ordinary GP and our model. In this experiment,
we get θ∗ = [1, 1, 1, 1, 0]T . Figure 5 shows the evolution of θ∗ during the VB
iterations.

1.5.2 Observations

We note that:

1. The posterior mean appears to ‘ignore’ the anomalous observation which
is promising

2. ‘Low’ values are assumed anomalous. It appears that the noise variance
is over estimated leading to a lack of identifiability.

1.5.3 Next steps

1. Investigate the estimation of noise variance
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(a) GP Fit (b) Anomaly detection model fit

Figure 4: Latent process observed through noise with probability of being
switched off.

Figure 5: Evolution of θ during optimization.
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2. Verify VB implementation by monitoring the evidence lower bound (ELBO)

3. Experiments with real data
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