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1 Introduction

We aim to explore the use of Gaussian processes to model rainfall potential and
exploit this model to detect anomalous rain gauge readings. Faulty readings
commonly appear as:

1. Null readings when rainfall occurred
2. Extreme readings when lower rainfall occurred

Let us focus on the initial case, zero readings when the rainfall was greater
than zero.

1.1 Model

The rainfall is observed at L locations, x = {x1,...,%x5}, over T time intervals
with the potential for rain at time ¢

fi(x) ~ GP(0,Ky). (1)
The rainfall y;; observed at location 7 at time ¢ is given as follows
) Juter wp 0
Yie = { €it wp 1-—06; (2)

where ¢;; ~ N(0,02) is observation noise. If we introduce a Bernoulli random
variable d;; ~ B(6;), we can write the observation model as

Yir = fudin + €t (3)
Let y: = [y1s,- .-, yr¢]? and similarly introduce f;, d;, 6.
The joint distribution for our problem is given by

T
p(Y,F,D[6,7) = [ ply:, i, de|6, ) (4)

t=1



Don't we have to make some assumption
Where ~ are the hyper-parameters controlling the nature of K;. €<—— about the form K_t to reduce the make the

estimation of the parameter \gamma
Let’s assume 7 = 1. We have ‘mat P g

easier?
p(ye, £, de|0,7) = p(yelfi, de)p(fi|v)p(ds|0) (5)
where
L
p(yilfe, di) = [ [N (wirldic fir, o2),
i=1
L
p(di|0) = [T 65 (1 — 6:)* %,
i=1
and

p(fily) = N(£:]0,Ky).

1.2 Inference
We would like to determine:
e The parameters ~, 0

e The posterior p(f;|y)

Do we need a predictive distribution at all?
o 9 2 9 9 5 The current approach as formulated fits a smooth function
o The predlCtlve distribution p(ft |y’1§) é that loosely interpolates the observed precipitation at time t.
L Whi(;h means we are not predicting any unobserved value.
To get the parameters, we would need to maximize the marginal likelihood

Based on that observation (i.e. no prediction of
%k unobserved value is made), | believe that the
¥, 0" = arg max § /p(}’t, f;, d:|0,~)df; choice of the kernel has little impact on the
0.~y d: joint distribution (Eq. 4). Therefore the SE/RBF
kernel can be used with MLE as parameter
This is intractable due to the sum over all possible d;. We proceed via variational

inference where we optimize the lower bound on the marginal likelihood.

logp(y+l8,7) = E{log p(y+, £, d:16,7)} — E{log g(fi, i)} (6)
where
L
q(fi,dy) = q(f) [ [ a(dar)
i=1

is the variational approximation to the true posterior.
We proceed as in [I] to derive the variational approximation to the posterior
as well as the hyperparameters. We find that

q(fr) = N(fi|py, X)

and
q(di) = " (1 — ;) '~ %
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Figure 1: Latent process observed through noise with probability of being
switched off.

Shouldn't this be d? (\theta is

the parameter of the Bernoulli .
model that generates d) 1.3 Experlments

We explote 0 and the predictive mean in a 1D example where the observations
are drawn from a GP with a squared exponential kernel. See Figure We
compare the values of 8™ in a case with an anomaly and without. For the
observations in Figurewhere there are no anomalies, 8 = [0,1,1,1,1]7 while
in Figure 0" =[0,1,0,1,1]T where the third observation is anomalous.
1.3.1 Observations

We note that:

1. The posterior mean appears to ‘ignore’ the anomalous observation which
is promising
2. ‘Low’ values are assumed anomalous. It appears that the noise variance

is over estimated leading to a lack of identifiability.

1.3.2 Next steps

1. Investigate the estimation of noise variance
2. Verify VB implementation by monitoring the evidence lower bound (ELBO)

3. Experiments with real data % Log-transforming the observed precipitation gives a distribution
much closer to a Gaussian (key assumption in GP) than otherwise.
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